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Coordinate Frame Useful for Rigid-
ody Displacement Metrics

enkatesh Venkataramanujam
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lorida Institute of Technology,
elbourne, FL 32901

his paper presents the definition of a coordinate frame, entitled
he principal frame �PF�, that is useful for metric calculations on
patial and planar rigid-body displacements. Given a set of dis-
lacements and using a point mass model for the moving rigid-
ody, the PF is determined from the associated centroid and prin-
ipal axes. It is shown that the PF is invariant with respect to the
hoice of fixed coordinate frame as well as the system of units
sed. Hence, the PF is useful for left invariant metric computa-
ions. Three examples are presented to demonstrate the utility of
he PF. �DOI: 10.1115/1.4002245�

Introduction
The focus here is on presenting a methodology for identifying a

seful fixed frame for performing metric computations on finite
ets of planar or spatial displacements. A metric is used to mea-
ure the distance between two points in a set. There are various
etrics for finding the distance between two points in Euclidean

pace. However, finding the distance between two locations of a
igid-body is still the subject of ongoing research, see Refs.
1–13�. Kazerounian and Rastegar �13� defined metrics that de-
end on the shape and mass density of the finite moving body.
ore recently, Sharf et al. �14� discussed Riemannian and Euclid-

an averages for rigid-body rotations and Angeles �15� investi-
ated the use of characteristic lengths that are used to combine
ranslations and rotations in some manner for use in distance met-
ics. Furthermore, Zhang and Ting �16� examined Riemannian
etrics on point-line displacements. Finally, Di Gregorio �17�

ought to employ a geometric approach to identify useful distance
etrics.
For two locations of a rigid-body �either SE�2�-planar or SE�3�-

patial� all metrics yield a distance, which is dependent on the
hosen fixed or moving frames of reference and the units used, see
efs. �4,7�. But, a metric independent of these choices, referred to
s bi-invariant, is desirable. Metrics independent of the choice of
oordinate frames and the units used do exist on SO�N�, see the
ork of Larochelle and McCarthy �8�. One bi-invariant metric
efined by Ravani and Roth �18� defines the distance between two
rientations of a rigid-body as the magnitude of the difference
etween the associated quaternions. Of related background inter-
st are the works by Horn �19� and Shoemake and Duff �20�. Horn
olved the problem of finding the rigid-body transformation be-
ween two coordinate frames using point coordinates by using
amilton’s quaternions, whereas Shoemake and Duff examined

he problem of decomposing homogeneous rigid-body displace-
ents into rotations and translations using the polar decomposi-

ion.
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The PF has been introduced to support the ongoing develop-
ment of polar decomposition based metrics on the displacement
groups �21–23�. These techniques are based on the polar decom-
position �PD� of the homogenous transform representation of the
elements of SE�N� and the principal frame �PF� associated with
the finite set of rigid-body displacements. The mapping of the
elements of the special Euclidean group SE�N-1� to SO�N� yields
hyperdimensional rotations that approximate the rigid-body dis-
placements. Conceptual representations of the mapping of
SE�N-1� to SO�N� are shown in Figs. 1 and 2. Once the elements
are mapped to SO�N� distances can then be evaluated by using a
bi-invariant metric on SO�N�. Due to the use of the PF, the re-
sulting metric on SE�N−1� is left invariant �i.e., independent of
the choice of fixed frame F�.

2 Metric on SO(N)
Here, we briefly the review the use of the polar decomposition

to yield the hyperdimensional rotations that approximate spatial or
planar displacements. The elements in SO�N� are derived from
homogenous transformations representing planar SE�2� or spatial
SE�3� displacements by polar decompositions, as shown in Fig. 2
and derived in Refs. �21,24�. The distance between any two ele-
ments �A1� and �A2� in SO�N� is determined by using the Frobe-
nius norm as follows:

d = ��I� − �A2��A1�T�F �1�

It has been verified that this is a valid metric on SO�N�, see Ref.
�25�.

3 Finite Sets of Locations
As was reviewed in Sec. 2, the elements of SE�N−1� can be

approximated by elements of SO�N� by using the polar decompo-
sition. However, the metric on SO�N� will not be well defined
because of its dependence on the choice of fixed reference frame.
In order to yield a useful metric for a finite set of displacements,
the principal frame �PF� is introduced. The principal frame is
unique for a finite set of displacements and invariant with respect
to the choice of fixed coordinate frame and the system of units,
see Refs. �26,27�. All of the displacements are then expressed with
respect to the principal frame and all distances are measured with
respect to this same frame. Hence, the polar decomposition based
metric yields results that are invariant with respect to the choice of
fixed frame. Next, we present the detailed implementation of this
methodology.

Consider the case when a finite number of n displacements �n
�2� are given and we have to find the magnitude of these dis-
placements. The displacements depend on the coordinate frames
and the system of units chosen. In order to yield a left invariant
metric, we utilize a PF that is derived from a unit point mass
model for a moving body as suggested by Larochelle �24�. A unit
point mass is assigned to the origin of each of the coordinate
frames representing rigid-body displacements, as shown in Fig. 3.
The point masses are then used to determine the center of mass of
the system and, eventually, the invariant principal frame of the set
of displacements, as shown in Fig. 4. This is done to yield a
metric that is independent of the geometry and mass distribution
of the moving body. The center of mass and the principal frame
are unique for the system and invariant with respect to both the
choice of fixed coordinate frame and the system of units �26,27�.

The procedure for determining the center of mass c and the PF
associated with the n prescribed locations is now described. A unit
point mass is located at the origin of each location, as shown in

Figs. 3 and 4.
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here di is the translation vector associated with the ith location
i.e. the origin of the ith location with respect to F�.

The PF is defined such that its axes are aligned with the prin-
ipal axes of the n point mass system and its origin is at the
entroid c. After finding the centroid of the system, we determine
he principal axes of the point mass system as follows. The inertia
ensor is computed from

�I� = �1��
i=1

n

�di�2 − �
i=1

n

didi
T �3�

here �I� is the 3�3 �spatial� or 2�2 �planar� identity matrix.
he principal frame is then determined to be

�PF� = �v1 v2 v3 c

0 0 0 1
� �4�

here vi are the principal axes �eigenvectors� associated with the
nertia tensor �I�, see the work of Greenwood �26�. The directions
f the vectors along the principal axes vi are chosen such that the
rincipal frame is a right-handed system. However, Eq. �4� does
ot uniquely define the PF since the eigenvectors vi of the inertia

Tangent Plane
to SO(N) at [P]

SO(N)

RN2

[P]

[T]
SE(N-1)

Fig. 1 SE„N−1… to SO„N…

T1 T2

A1 A2

SE(N-1)

SO(N)

Frobenius Norm

Polar Decomposition
Fig. 2 Mapping to SO„N…
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tensor are not unique; i.e., both vi and −vi are eigenvectors asso-
ciated with �I�. In order to resolve this ambiguity and yield a
unique PF, we choose the eigenvector directions that most closely
aligned PF to F. Note that in the planar case, the PF reduces to a
3�3 matrix

�PF� = �v1 v2 c

0 0 1
� �5�

The eight different right-handed PF orientations that are pos-
sible in the spatial case are

�v1 v2 v3 �

�v2 − v1 v3 �

�− v1 − v2 v3 �

�− v2 v1 v3 �

�v2 v1 − v3 �
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Fig. 3 Unit point mass model
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Fig. 4 Unit point mass model and associated PF
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�v1 − v2 − v3 �

�− v2 − v1 − v3 �

�− v1 v2 − v3 �
nd in the planar case there are four possible orientations of the
F, as seen in Fig. 5,

�v1 v2 �

�v2 − v1 �

�v1 − v2 �

�− v2 v1 �
he PF is selected as the frame that is most closely oriented, per
q. �1�, to the fixed frame. However, there are degenerate cases

hat must now be addressed.
In the degenerate planar case in which the lines defining the PF

orm equal angles �i.e., 45 deg� with the axes of the fixed frame,
hen all four possible orientations will be equidistant to the fixed
rame’s orientation. In this case, we define the x-axis of the PF
long the eigenvector in the first quadrant. In the similarly degen-
rate spatial case, in which the eigenvectors form equal angles
i.e., 54.7 deg� with each axis of the fixed frame, we define the
-axis of the PF along the eigenvector in the first octant and the y
nd z axes are chosen such that PF is the frame that is most
losely oriented, per Eq. �1�, to the fixed frame.

Summary of the PF and PD Metric Technique
For a set of n finite rigid-body locations the steps to be fol-

owed are as follows:

1. Determine the PF associated with the n locations.
2. Determine the relative displacements from the PF to each of

the n locations.
3. Determine the characteristic length R associated with the n

displacements with respect to the PF and scale the transla-
tion terms in each by 1 /R.

4. Compute the projections of PF and each of the scaled rela-
tive displacements using the polar decomposition.

5. The magnitude of the displacement is defined as the distance
from the PF to the scaled relative displacement as computed
via Eq. �1�. The distance between any two of the n locations
is similarly computed by the application of Eq. �1� to the

F

v1

v2

Fig. 5 Four possible orientations for the PF
projected scaled relative displacements.
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5 Example: 11 Planar Locations
Consider the rigid-body guidance problem proposed by J.

Michael McCarthy, U.C. Irvine for the 2002 ASME International
Design Engineering Technical Conferences held in Montreal,
Quebec, as shown in Fig. 3 �28�. The 11 planar locations are listed
in Table 1 and the origins of the coordinate frames with respect to
the fixed reference frame F are shown in Fig. 4. The centroid and
the principal axes directions are calculated and used to determine
the PF �Fig. 6�

�PF� = 	 1.0000 0.0067 0.0094

− 0.0067 1.0000 0.6199

0.0000 0.0000 1.0000

 �6�

Note that this PF differs from that originally reported in Ref. �21�
due to the more rigorous methodology presented here. The 11
locations are now determined with respect to the PF and the
maximum translational component is found to be 1.9947 and the
resulting characteristic length is R=24L /�=15.239.

To illustrate the utility of the PF, we present its application for
distance metric calculations per Ref. �21�. The 11 locations are
then scaled by the characteristic length in order to find the dis-
tance to the principal frame. The magnitude of each of the dis-
placements with respect to the PF is listed in Table 1. The dis-
tance between any two of the locations is computed by the

Table 1 11 planar locations

x y
�

�deg� Mag.

�1.0000 �1.0000 90.0000 2.0076
�1.2390 �0.5529 77.3621 1.7762
�1.4204 0.3232 55.0347 1.3165
�1.1668 1.2858 30.1974 0.7483
�0.5657 1.8871 10.0210 0.2644
�0.0292 1.9547 1.7120 0.0807

0.2632 1.5598 10.0300 0.2606
0.5679 0.9339 30.1974 0.7464
1.0621 0.3645 55.0346 1.3159
1.6311 0.0632 77.3620 1.7762
2.0000 0.0000 90.0000 2.0078
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Fig. 6 Principal frame for eleven desired locations
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pplication of Eq. �1� to the projected scaled relative displace-
ents. For example, the distance between locations 1 and 2 was

ound to be 0.3115.

Example: Ten Spatial Locations
Consider the rigid-body guidance problem investigated by

arochelle �24�. The ten spatial locations with respect to the fixed
eference frame F are listed in Table 2 and shown in Fig. 7. The
rincipal frame is given by

�PF� = 	
0.756 0.655 0.000 5.500

0.000 0.000 1.000 0.000

0.655 − 0.756 0.000 0.000

0.000 0.000 0.000 1.000

 �7�

he maximum translational component L is found to be 6.7256
nd the associated characteristic length is R=24L /�=51.3795.
he distance from the first location to the principal frame was

ound to be 2.7488. The distance between locations 1 and 2 was
ound to be 0.3485.

Example: Pick and Place Task
Consider the following rigid-body guidance problem represent-

ng a spatial pick and place operation commonly found in an
ndustrial assembly line. The ten spatial locations with respect to
he fixed reference frame F are listed in Table 3 and shown in Fig.
. The principal frame is given by

Table 2 Ten desired locations

x y z Long ��� Lat ��� Roll ���

1 0 5 100 0 0
2 0 4 90 0 10
3 0 3 80 0 20
4 0 2 70 0 30
5 0 1 60 0 40
6 0 �1 50 0 50
7 0 �2 40 0 60
8 0 �3 30 0 70
9 0 �4 20 0 80

10 0 �5 10 0 90

T10

T9

T8

T7

PF

T6

T5

T4

T3

T2

F

T1
Fig. 7 Principal frame for ten desired locations
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�PF� = 	
0.603 0.378 − 0.702 5.950

0.002 0.880 0.475 7.050

0.797 − 0.289 0.530 5.300

0.000 0.000 0.000 1.000

 �8�

The maximum translational component L is found to be 4.0920
and the associated characteristic length is R=24L /�=31.2602.
The distance from the first location to the principal frame was
found to be 2.8135. The distance between locations 1 and 2 was
found to be 0.7842.

8 Conclusions
A coordinate frame, entitled the principal frame �PF�, that is

useful for metric calculations on spatial and planar rigid-body
displacements was rigorously defined and presented. Given a set
of displacements and using a point mass model for the moving
rigid-body, the PF is determined from the associated centroid and
principal axes. It was shown that the PF is left invariant, i.e.,
independent of both the choice of the fixed coordinate frame and
the system of units used. Hence, by defining relative displace-
ments with respect to the PF, the PF has proven useful in obtain-
ing left invariant distance metric computations. Three examples
that utilized the PF and the polar decomposition based metric of
Larochelle et al. �21� were presented to demonstrate the utility of
the PF. The principal frame has potential applications in mecha-
nism approximate motion synthesis, robot motion planning, and
other applications, which benefit from left invariant metrics on the
spatial and planar displacement groups.

Table 3 Ten desired locations

x y z Long ��� Lat ��� Roll ���

5.0 9.0 1.0 100 20 35
4.0 8.0 2.0 90 30 10
3.0 7.0 3.0 80 35 20
4.0 6.0 4.5 70 45 30
5.0 5.5 5.0 60 57 40
6.0 5.0 6.0 50 35 50
7.0 6.0 7.0 40 45 60
8.0 7.0 8.0 30 50 70
8.5 8.0 8.5 20 72 80
9.0 9.0 8.0 10 85 90
Fig. 8 Principal frame for the pick and place task
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